<strike id="g1ugu"></strike>
    <nobr id="g1ugu"><ruby id="g1ugu"><tr id="g1ugu"></tr></ruby></nobr>

  1. <font id="g1ugu"></font>
    <b id="g1ugu"></b>

  2. 
    

      <tt id="g1ugu"></tt>

        <rp id="g1ugu"></rp>
        首页 - 网站建设 - 常见的网站服务器架构

        常见的网站服务器架构 返回列表

        瑞瑞2018-09-19编辑发布,已经有2189个小可爱看过这篇文章啦

        初级篇:(单机模式)

        假设配置:(Dual core 2.0GHz,4GB ram,SSD)基础框架:apache(PHP) + Mysql / IIS + MSSQL(最基础框架,处理一般访问请求)

        进阶1 : 替换Apache为Nginx,并在数据库前?#30001;蟘ache层 【数据库的速度是最大的瓶颈】

        Nginx(PHP) + Memcache + Mysql (此时已经具备处理小型访问量?#21738;?#21147;)

        进阶2:随着访问量的上涨,最先面临的问题就来了:CGI无法匹配上Nginx的高IO性能,这时候可以通过写扩展来替代脚本程序来提升性能,C扩展是个好办法,但是大家更喜欢用简单的脚本语言完成任务,Taobao团队开源了一个Nginx_lua模块,可以用lua写Nginx扩展,这时候可处理的并发已经超越进阶1 一个档次了。
        Nginx(nginx_lua or C) + Memcache + Mysql (此时处理个同时在线三四千人没有问题了)

        进阶3:随着用户的增多,Mysql的写入速度成了又一大瓶颈,读取有memcache做缓存,但写入是直接面对Mysql,性能受到了很大阻碍,这时候,要在Nginx和Mysql中间加入一层写缓存,队列系统就出场了,就以RabbitMQ为例,所?#34892;?#20837;操作全部丢到这只兔子的胃里面,?#32531;?#23617;股后面写个接应程序,一条条的拉出来再写入mysql。而RabbitMQ的写入效率是Mysql的N倍,此时架构的处理能力又上一阶层。

        |----write------>RabbitMQ--------
        Nginxlua or c----- |--------->Mysql
        |----read------>Memcache--------

        (此时的并发吞吐能力已经可以处理万人左右在线)


        中级篇:(分而治之)

        此时我们在单机优化上已经算是达到极限,接下来就要集群来显示作用了。

        数据库: 数据库总是在整个环节中是吞吐能力最弱的,最常见的方法就是sharding。
        sharding可以按多种方法来分,没有定式,看情况。可以按用户ID区段分,按?#21015;?#20998;等等,可用参考软件:mysql proxy(工作原理类似lvs)

        缓存:memcache一般采用的是构建memcache pool,将缓存分散到多台memcache节点上,如何将缓存数据均匀分散在各节点,一般采用将各节点顺序编号,?#32531;骽ash取余对应到各个节点?#20808;ァ?#36825;样可以做到比较均匀的分散,但是有一个致命点就是,如果节点数增加或减少,将会带来几乎80%的数据迁移,解决方案我们在高级篇再提。

        WEB服务器篇: web服务器集群的建设,最常见的就是lvs方式(memcache pool同样可以如此组建),lvs的核心就是调度节点,调度节点负责将流量通过算法分散到各个节点上,因调度所耗资源很少,所以可以产生很高的吞吐率,后台节点数量可以任意增删,但此法弊病就是如果调度节点挂了,则整个集群都挂了,解决方案我们在高级篇提。

        方法2:参见 HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer


        高级篇:(高可用性+高可扩展性的集群)

        单点调度故障解决:
        集群的好处显而易见,但是有一个弊?#21496;?#26159;单节点进行调度,如果节点出现故障,则整个集群全部都无法服务,对此的解决方案,我们使用keepalived来解决。Keepalived for Linux
        keepalived是基于VRRP协议(VRRP协议介绍)的,请一定先了解VRRP协议后再进行配置。
        keepalived可以把多台设备虚拟出一个IP,并自动在故障节点与备用节点之间实现failover切换。这样我们配置两台货多台lvs调度节点,?#32531;?#37197;置好keepalived就可以做到lvs调度节点出现故障后,自动切换到备用调度节点。(同样适用于mysql)

        memcache集群扩展解决:

        memcache因为我们一般采用的都是hash后除以节点数取余,?#32531;?#20998;配到对应节点上,如果节点数出?#30452;?#21270;,以前的缓存数据将基本都不能命?#23567;?br /> 解决方法:consistent hashing 简介:一致性哈希

        consistent hashing大概的思路就是,把hash后的值保证在 0 ~ (2^32)-1 的数值上,?#32531;?#25226;这一连串数字对应?#25104;?#21040;一个想象的圆上。

        把要存储的各个值hash后,放到圆上

        ?#32531;?#25226;cache节点也用同样的hash方法,?#25104;?#21040;圆上,?#32531;?#27599;个刚才hash过的value顺时针寻找离自己最近的节点,这个节点就是存储它的节点。

        为了提高存储的平衡性,算法还可以加入虚拟节点的概念,即每个实际cache节点,会在圆上对应N个虚拟的节点,这样可以提高算法的命中率,更加平衡。consistent hashing原理:Consistent hashing and random trees完结。


        针对不同的项目情况,输煤这边会根据实?#26159;?#20917;进行针对性的采用不同的服务器架构,以确保网站上线后的稳定运行。


        相关新闻

        来电咨询 4146.com牛彩彩票
        <strike id="g1ugu"></strike>
          <nobr id="g1ugu"><ruby id="g1ugu"><tr id="g1ugu"></tr></ruby></nobr>

        1. <font id="g1ugu"></font>
          <b id="g1ugu"></b>

        2. 
          

            <tt id="g1ugu"></tt>

              <rp id="g1ugu"></rp>
              <strike id="g1ugu"></strike>
                <nobr id="g1ugu"><ruby id="g1ugu"><tr id="g1ugu"></tr></ruby></nobr>

              1. <font id="g1ugu"></font>
                <b id="g1ugu"></b>

              2. 
                

                  <tt id="g1ugu"></tt>

                    <rp id="g1ugu"></rp>